Projekttagebuch

Der Säbelzahntiger an der Nordsee

Eine Zeitreise in unser geothermisches Reservoir

Auf leisen Pfoten schleichen die Säbelzahntiger durch die weite Steppe. Die Raubkatzen jagen in Rudeln, um große grasende Pflanzenfresser zu erbeuten. Warmer Wind streicht über die Graslandschaft Norddeutschlands, das Klima ist warm und fast tropisch – der Planet befindet sich in einem natürlichen Klimawandel.

Rund 45 Millionen Jahre später, 1847, wird ein Homo sapiens, der englische Geologe Charles Lydell, diese erdgeschichtliche Epoche nach der griechischen Göttin der Morgenröte Eos (griech. ἔος bzw. ἠώς und griech. καινός = „neu, ungewöhnlich“) nennen: Eozän.

Nur dem Namen nach ein Tiger: Rekonstruktion eines Smilodons
© Von Sergiodlarosa, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6835781

Noch zu Beginn des Eozäns, vor etwa 56 Millionen Jahren, waren große Teile von Mitteleuropa Festland. Bis nach Skandinavien herrschte eine üppige Vegetation mit tropischen Bernsteinwäldern. Aus diesen Wäldern stammt übrigens der Bernstein, den wir heute an der Küste der Ostsee finden – diese jedoch entstand erst viel später, nach der nächsten Eiszeit.

Im Eozän dagegen bildete sich zunächst das Nordseebecken heraus, und weite Teile des heutigen mitteleuropäischen Tieflandes waren von der jungen Nordsee bedeckt. Dänemark existierte noch nicht als Landmasse und der Nordseestrand reichte von Belgien über die Niederlande, das nördliche Niedersachsen bis nach Polen, dort, wo heute Gdansk liegt.

An diesem Sandstrand der jungen Nordsee befindet sich auch das heutige Hamburg. Woher aber wissen die Forschenden nach Millionen von Jahren so genau, dass hier ein Sandstrand war? Sand ist ein typisches Ablagungsmaterial, das entsteht, wenn Berge und Gestein abgetragen werden: Überall dort, wo Flüsse ins Meer münden, wird auch Sand abgelagert. In der Sandsteinschicht, die wir geothermisch nutzen wollen, gibt es noch einen weiteren Hinweis auf die frühere Nordseeküste an diesem Ort: Das Wasser, das bei unseren ersten Fördertests zutage kam, war grünlich. Die Färbung entsteht durch das Tonmineral Glaukonit, ein Tonmineral, das nur in Küstenbereichen vorkommt und damit ein klarer wissenschaftlicher Beweis für den Übergang von der Landmasse zum Meer ist.

Was vor Jahrmillionen entstand, lässt sich heute hoffentlich für unsere zukünftige Energieversorgung nutzen – ein Gruß aus einem fernen, längst vergangenen Erdzeitalter.


Zweite Bohrung erfolgreich beendet

Mit der zweiten Bohrung haben wir mittlerweile erfolgreich die vertikale Endtiefe von rund 1.460 Metern erreicht – damit sind die Bohrarbeiten in Wilhelmsburg abgeschlossen. Die ersten Container werden bereits vom Bohrplatz abtransportiert und auch der Bohrturm wird in den nächsten Wochen vollständig abgebaut.

Für die zukünftigen Fördertests reicht der Aufbau einer kleineren Anlage über den Bohrlöchern.

Erneut Bohrkerne gezogen

Nachdem wir mit der zweiten Bohrung den oberen Bereich der aussichtsreichen Sandsteinschicht erreicht hatten, konnten wir erfolgreich Rohre einbauen. Anschließend haben wir – wie bereits bei der ersten Bohrung – mehrere Gesteinsproben, also Bohrkerne, gezogen.

Die Bohrkerne werden nun im Labor gereinigt und weitergehend untersucht. Hierbei sind insbesondere die Porosität und Durchlässigkeit wichtige Parameter. So können wir weitere Informationen über unser Zielreservoir sammeln, die wir benötigen, um das geothermische Potenzial am Standort in Wilhelmsburg zu bewerten. Dabei helfen auch die Daten, die wir aus den Bohrloch-Messungen gesammelt haben.


Auf dem Bild ist zu sehen, wie der Bohrkern über die Rampe von der Bohranlage nach unten transportiert wird. Danach wird der Kern aus den Rohren befreit, fachmännisch markiert und in Meterstücke zersägt und mit genauen Tiefenangaben versehen in Kernkisten verschlossen und ins Labor geliefert.

Hier sieht man einen Bohrkern aus unserem geothermischen Zielreservoir!

Die grünliche Färbung rührt von dem Tonmineral „Glaukonit“ her, das in den Sandsteinen vorkommt.

Die zweite Bohrung: Die Produktionsbohrung

Mit der zweiten Bohrung geht es gut voran: Wir sind bereits weit in den Gesteinsschichten des Tertiärs vorangekommen. Momentan werden Rohre eingebaut und zementiert. Wenn dieser Schritt abgeschlossen ist, werden wir unser Zielreservoir erneut durchbohren und untersuchen.

Die zweite Bohrung ist die Produktions- oder Förderbohrung: Sollte die Sandsteinschicht geothermisch nutzbar sein, soll darüber später das warme Thermalwasser gefördert werden.

Während die erste Bohrung bereits bei 1.300 Meter Tiefe die Sandsteinschicht erreichte, liegt das Zielreservoir bei der zweiten Bohrung etwas tiefer.


Rohre auf dem Bohrplatz: bereit für den Einsatz


Beide Bohrungen wurden nach einigen hundert Metern in einem Winkel von 45 Grad abgelenkt und liegen daher im Reservoir räumlich mehr als 1.000 Meter auseinander. Durch diese Distanz wird verhindert, dass das Thermalwasser, das abgekühlt in den Untergrund zurückgeleitet wird, über die Förderbohrung direkt wieder nach oben gepumpt wird (ein sogenannter hydraulischer Kurzschluss).

Stattdessen kann sich das abgekühlte Wasser erneut erwärmen, während es über mehr als einen Kilometer Strecke wieder auf die Förderbohrung zuströmt.

Die Grafik zeigt den groben Verlauf der thermalwasserführenden Sandsteinschicht: Die Produktionsbohrung soll das warme Thermalwasser aus zirka 1.300 Meter Tiefe fördern. Über die Injektionsbohrung soll es in einem geschlossenen Kreislauf wieder in das Reservoir zurückgeleitet werden.

Pressetermin zur Fündigkeit

Rechtzeitig zum Start des Pressetermins gestern Vormittag hatte sich der morgendliche Regen verzogen: Rund zwei Dutzend Pressevertreter:innen, darunter auch mehrere TV-Teams, waren zum Bohrplatz nach Wilhelmsburg gekommen, um sich über die Neuigkeiten beim Geothermie-Projekt zu informieren. Auch Michael Pollmann, Staatsrat für Umwelt, Klima, Energie und Agrarwirtschaft, war wieder als Vertreter der Stadt Hamburg vor Ort, wie bereits beim Bohrbeginn im Januar.

Staatsrat Pollmann bei seinem Grußwort:

„Die Geothermie ist neben Wind und Sonne ein weiterer Baustein für eine erfolgreiche Energiewende. In Wilhelmsburg sind wir bei der ersten Geothermiebohrung in mittlerer Tiefe auf ein ausgesprochen vielversprechendes Thermalwasservorkommen gestoßen, welches Anlass zu der berechtigten Hoffnung gibt, dass wir hier und vielleicht auch an anderen Stellen die Geothermie für die Wärmewende einsetzen können.“

Großes Interesse der lokalen Medien bei dem Termin auf dem Bohrplatz

„Wir [sind] unserem Ziel einen großen Schritt nähergekommen, grundlastfähige und lokale Ökowärme für Hamburger Haushalte zu gewinnen. Jetzt gilt es, auch die zweite Bohrung sicher in die Tiefe zu führen und die Ergebnisse der Fördertests abzuwarten.“

Kirsten fust, geschäftsführerin der hamburger energiewerke

Anschließend wurden die Fragen der Presse beantwortet. Hier links im Bild Kerstin Müller, Geologin und Projektleiterin Geothermie.

Danach überreichten wir Staatsrat Pollmann ein Präsent …

… eine Geothermie-Grafik mit Gesteinsschichten und echten Gesteinsproben aus Wilhelmsburg.

Kirsten Fust beim Interview mit dem NDR

Wir sind fündig!

Es ist soweit: In einer Tiefe von 1.300 Meter konnte unser Projektteam Thermalwasser in einer zirka 130 Meter mächtigen Gesteinsschicht nachweisen. Die wasserführende Sandsteinschicht ist rund 45 Millionen Jahre alt und war ursprünglich der Strandbereich der jungen Nordsee. Erste Fördertests haben die Durchlässigkeit des Sandsteins bestätigt, sodass jetzt die zweite Bohrung erfolgt.

Im Rahmen des wissenschaftlichen Begleitprogramms mesoTherm wurden mehrere Meter lange Gesteinsproben, sogenannte Bohrkerne, in unterschiedlichen Gesteinsschichten entnommen. Diese haben auch gezeigt, dass in Sandsteinschichten in über 3.000 Meter Tiefe keine ausreichenden Thermalwasservorkommen zur geothermischen Nutzung zu erwarten sind. Die Sandsteinschicht in 1.300 Meter Tiefe hat sich dagegen als besonders mächtig erwiesen. Sie wurde daher anhand von Bohrkernen und hydraulischen Tests erstmalig auf ihr geothermisches Potenzial untersucht.

In einer Tiefe von 1.300 Metern ist generell mit einer Thermalwasser-Temperatur in einer Bandbreite von 45-50 Grad Celsius zu rechnen.

Unser Projektteam arbeitet zurzeit an verschiedenen technischen Lösungen, die auch den Einsatz von Wärmepumpen berücksichtigen – mit abschließenden Ergebnissen ist im Herbst dieses Jahres zu rechnen.

Rückblick: Die wichtigsten Stationen der Erkundungsbohrung

Lach- und Sachgeschichten auf dem Bohrplatz

Wir hatten kürzlich hohen Besuch auf dem Bohrplatz: Ein Filmteam der „Sendung mit der Maus“ war zu Gast!

Für den TV-Kinderklassiker werden verschiedene Beiträge zu erneuerbaren Energien gedreht, und in einer dieser Sendungen wird es um Geothermie gehen. Dafür war das Filmteam europaweit unterwegs. Den Kindern wird darin erklärt, was Erdwärme ist und wie sie für die Energiegewinnung genutzt werden kann. Unsere Bohranlage in Wilhelmsburg dient als konkretes Beispiel, dass auch in Deutschland das Potenzial der Erdwärme zukünftig genutzt werden soll!

Die Sendung wird voraussichtlich im Juli ausgestrahlt. Derweil prüft unser Projektteam weiterhin das Geothermie-Potenzial der Erkundungsbohrung.


Das Filmteam auf dem Weg zum Bohrturm

Nachtrag: Der Beitrag zur Geothermie bei der „Sendung mit der Maus“ ist online und kann hier angesehen werden! (Das TV-Team vom WDR war bereits im Mai bei uns auf dem Bohrplatz in Hamburg-Wilhelmsburg und hat gedreht – unser Fokus hat sich in der Zwischenzeit verlagert und wir untersuchen jetzt eine aussichtsreiche Sandsteinschicht in zirka 1.300 Meter Tiefe auf ihr geothermisches Potenzial.)

Bohrkern aus 3.000 Meter Tiefe entnommen

Bereits in einer Tiefe von 3.000 Metern hat unser Team aus Bohrspezialisten und Geologen eine Sandsteinschicht erreicht, die geothermisch nutzbar sein könnte. Um das Potenzial dieser Schicht besser einschätzen zu können, wurde heute ein Bohrkern zutage gefördert. So werden die zylindrischen Gesteinsblöcke genannt, die durch das sogenannte Kernbohren gewonnen werden und mehr über die Beschaffenheit der Gesteinsschicht verraten.

Die geologischen Experten des begleitenden Forschungsprogramms mesoTherm werden nun die etwa 13 Meter lange Gesteinsprobe im Labor genau untersuchen – ihre Analyse wird zeigen, wie porös und durchlässig der Sandstein ist und ob sich diese Gesteinsschicht für die Tiefengeothermie eignet. Die Analyse und mögliche folgende Fördertests werden mehrere Wochen dauern.

Auch mitteltiefe Geothermie wird überprüft

Außerdem haben unsere Experten eine weitere mächtige Schicht in einer Tiefe von ca. 1.300 Metern identifiziert, die Thermalwässer führen könnte. Nach ersten Schätzungen könnten die Temperaturen der Thermalwässer dort zwischen 50 und 60 Grad Celsius liegen; über Wärmepumpen könnten sie auf eine netztaugliche Vorlauftemperatur von 80 Grad Celsius gebracht werden. Diese Möglichkeit der mitteltiefen Geothermie will unser Projektteam überprüfen.

„Wir verfolgen jetzt zusammen mit der Analyse der tieferliegenden Gesteinsschicht zwei Ansätze, um aus unserer Erkundungsbohrung erneuerbare Erdwärme für die nachhaltige Wärmeversorgung in Wilhelmsburg nutzbar zu machen.“

michael prinz, geschäftsführer der hamburger energiewerke

Von Meißeln und Diamanten – durch das Lias

Mittlerweile sind wir bei der Bohrung ins Zeitalter des Lias vorgedrungen – der Name kommt aus dem Englischen layers (Schichten) oder dem Gallischen leac (Steinplatte). Lias bezeichnet die erdgeschichtliche Periode vor ca. 206-180 Mio. Jahren.
Mit einer Tiefe von deutlich mehr als 2.500 Metern kommen wir unserem Zielreservoir immer näher.


Leider können wir nicht mit Fotos und Videoaufnahmen aus dem Erdinneren aufwarten. Aber dieser Bohrmeißel hat schon alles gesehen: Es ist ein sogenannter PDC-Meißel, der bei der Bohrung unter anderem zum Einsatz kommt. PDC steht für Polycristalline Diamond Cutter.

Der Name verrät es schon: Besetzt sind die sechs sogenannten Rippen mit Industriediamanten, widerstandsfähig genug, um sich auch durch sehr harte Gesteinsschichten bohren zu können.

Mit zunehmender Tiefe verringert sich der Durchmesser des Bohrlochs. Die Bohrmeißel, die zum Einsatz kommen, werden deswegen auch immer kleiner.

Der Bohrmeißel ist am unteren Ende des rotierenden Bohrstranges montiert und zerkleinert das Gestein.  Durch die Spülung wird dann das sogenannte Bohrklein nach oben transportiert und noch vor Ort von den Geologen analysiert.

Auf dem Bild rechts erkennt man gut in der Mitte eine der Düsen, aus der während der Bohrung die Bohrspülung tritt.


Die Erdgeschichte unterm Mikroskop: Die Anwendungsforschung bei der Geothermiebohrung

Bei unserer Bohrung werden regelmäßig, alle fünf bis zehn Meter, Proben entnommen und noch vor Ort untersucht. So lässt sich genau bestimmen, in welcher Gesteinsschicht sich die Bohrung gerade befindet. Die Information ist sehr hilfreich, um die Bohrung sicher in das Zielreservoir zu führen.  

Die Gesteinsproben werden in kleinen Röhrchen aufbewahrt: Sandsteine, Kalkstein sowie Tonsteine können gut anhand ihrer Eigenschaften (Körnung, Oberflächenstruktur, Farbe, Reaktion mit Salzsäure) unterschieden werden.
Bei den weißen Gesteinsproben handelt es sich um Kalksteine, bei den dunklen Proben um Tonsteine.

In einem Container auf dem Bohrplatz zeigt ein Mitarbeiter, der sogenannte Mud-Logger, das anhand der angetroffenen Gesteine erstellte Schichtprofil.

Neben Gesteinsproben können auch Mikrofossilien viel Aufschluss über die Erdschichten unter unseren Füßen geben. Sie sind nur zwischen drei Hundertstel Millimeter und einem Millimeter groß. Als Mikrofossilien werden Fossilien von Mikroorganismen und mikroskopisch kleine fossile Reste größerer Lebewesen bezeichnet.

Mikropaläontologen untersuchen die winzigen Fossilien, die mit dem Bohrklein an die Oberfläche gespült werden. Sie können dem Projekt wie auch den Wissenschaftlern und Wissenschaftlerinnen wertvolle Informationen über das erdgeschichtliche Alter der erbohrten Gesteine geben.

Eine Besonderheit im Projekt: Die Rolle der Forschung

Dass Mikropaläontologen direkt vor Ort auf dem Bohrplatz dabei sind, ist eine Besonderheit von unserer Bohrung in Wilhelmsburg. Zum einen unterstützen sie uns direkt vor Ort bei unseren Bohraktivitäten. Zum anderen stellen wir ihre Erkenntnisse den Kolleginnen und Kollegen für ihre wissenschaftliche Begleitforschung zur Verfügung. Die wissenschaftliche Begleitforschung spielt im Projekt IW³ – Integrierte WärmeWende Wilhelmsburg – von dem die Geothermie-Bohrung zentraler Bestandteil ist, grundsätzlich eine wichtige Rolle. Denn die gewonnenen Erkenntnisse aus unserem Projekt lassen sich auch für mögliche weitere Geothermieprojekte im norddeutschen Raum nutzen.

Genau das ist das Ziel des Verbundvorhabens mesoTherm. Prof. Dr. Inga Moeck, Professorin für Angewandte Geothermik und Geohydraulik, und Dr. Matthias Franz von der Georg-August-Universität Göttingen erzählen in den Videos von ihrer Arbeit für das Projekt:


2.000-Meter-Grenze geknackt: Die Oberkreide

Wir kommen gut voran – und haben kürzlich schon eine Tiefe von 2.000 Metern erreicht! Mit unseren Erkenntnissen aus der laufenden Erkundungsbohrung und begleitenden Messungen gleichen wir kontinuierlich das erwartete geologische Schichtenprofil mit den tatsächlichen Gesteinsschichten ab. Seit den letzten ca. 200 Metern bohren wir nun durch die Gesteinsschichten der Oberkreide: Dieser Abschnitt der Erdgeschichte reicht 100 bis 66 Mio. Jahre zurück.

Stimmen zum Projekt: Die Projektleiterin Geothermie

Wer steckt eigentlich hinter dem Projekt? Im Video erzählt die Geologin und Projektleiterin Geothermie bei der HEGeo, Kerstin Müller, von ihren vielfältigen Aufgaben bei dem Bohrvorhaben, was sie motiviert und welche Herausforderungen zu meistern sind: